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ABSTRACT 

 
Since the introduction of the concept of the hydrologic cycle by Leonardo Da Vinci in the 15th 

century, several significant developments have taken place in hydrological modelling. Among them in 
the early days are the rational method, unit hydrograph theory, infiltration theories, extreme value 
theory, tank model, kinematic wave theory, Stanford watershed model, Xinanjiang model and variable 
infiltration capacity model. Hydrology has since witnessed an enormous growth in the latter part of the 
twentieth century as a result of technological and methodological advances. Invention of powerful 
computers, remote sensors, geographical information systems (GIS), worldwide web and networking 
have facilitated extensive data collection (both in time and in space), better data sharing, formulation 
of sophisticated mathematical methods including those for studying the inherent non-linearities, and 
development of highly complex models. Hydrological modelling is a challenging task nowadays 
because of the multi-faceted nature of the problem and the various choices available.  Despite the 
proliferation of models and modelling techniques in the past few decades there is no unique approach 
or model that suits all and all purposes.  Reviewing the literature reveals that hydrologic modelling 
based on the linear and stationary assumptions has reached saturation levels. Advances in analysis 
of non-linear systems in recent years have made it possible to explore the hydrologic system (which 
has always been non-linear but for simplicity has been assumed linear) within a non-linear framework. 
There is also evidence to believe that the stationarity assumption made in the analysis of hydrologic 
time series in the past is no longer valid due to human interference in the natural hydrologic cycle. In 
this paper, the author attempts to highlight some criteria for the choice of a model, data issues, 
modelling issues and limitations of different types of models including the challenges in calibration and 
uncertainty.   

 
1. INTRODUCTION 
 

Since the introduction of the rational method which perhaps is the first hydrological model to be 
developed, hydrological modelling has witnessed an enormous growth in the latter part of the 
twentieth century as a result of technological and methodological advances. Invention of powerful 
computers, remote sensors, geographical information systems (GIS), and world wide web and 
networking have facilitated extensive data collection (both in time and in space), better data sharing, 
formulation of sophisticated mathematical methods (including those for studying the inherent non-
linearities, scalings, and thresholds), and development of highly complex models. Such advances 
have enabled hydrologists to mimic the real hydrologic systems better and more precisely than two to 
three decades ago. However, the existence of such a plethora of hydrologic models and modeling 
techniques, with each one having its own pros and cons, can sometimes be confusing to even 
experienced hydrologists. 

Among the developments in hydrological modelling in the pre-computer era are the rational 
method [1], unit hydrograph theory [2], infiltration theories [3-5], extreme value theory [6], and the 
kinematic wave theory [7].  Prior to the development of such models, there have been related 
developments in fluid mechanics such as Chezy’s equation (1769), Darcy’s equation (1856), 
Manning’s equation (1885) etc. which have also become household names in hydrology.  It is also a 



fact that fluid mechanics, hydraulics and hydrology have no crisp boundaries.   In the pre-computer 
era, the analogy between water flow and electricity flow have been utilised to construct analogue 
models (electrical circuits) in which the analogies between electric current and flow rate, electrical 
resistance and friction, voltage (or potential difference) and pressure, and electrical capacitance and 
storage have been used.  However, such analogue models, despite their simplicity in construction and 
low cost, have become outdated with the emergence of digital computers.   

The developments that have taken place in the computer era can be broadly classified into 
conceptual models, physics-based models and data driven models.  Among the early conceptual 
models are the Stanford watershed model [8], Xinanjiang model [9-11], Tank model [12], HEC series 
[13,14], linear cascade model [15-18], linear channel [19], and the variable infiltration capacity (VIC) 
model [20].  Physics-based models start with governing equations based on the laws of conservation 
of mass, momentum and energy (St.Venant’s equations).  They are process-based but require a great 
deal of assumptions and simplifications, initial and boundary conditions, solution domain discretization, 
solution schemes to solve the resulting governing equations numerically, and parameter identification, 
calibration and validation.  Solution schemes usually employ the finite difference methods, finite 
element methods and their combinations.  Most such 'physics-based' models make approximations 
and assumptions making them over-simplified and losing the true meaning of physics-based models. 

More recently, many types of data driven models have emerged and received attention and 
acceptance.  Among the different types are regression models, stochastic models, artificial neural 
networks, support vector machines, genetic algorithms and genetic programming, fuzzy logic models, 
neuro-fuzzy models, and dynamical systems approach type models which makes use of theory of 
chaos.  Data driven models are attractive from a number of points of view.  For example, data contain 
all the measurable information about the system; they are easier to formulate and interpret; they are 
the only option when other approaches are infeasible; there is no need for a priori understanding of 
the processes involved; and particularly suited to theory weak data rich situations.  The objective of 
this paper is to describe briefly the criteria for the choice of a model, the challenges that lie ahead in 
the implementation of a model, and to highlight some of the recent data driven types of modelling 
including their applications. 

  
2. CRITERIA FOR THE CHOICE OF A MODEL 
 

One of the guiding principles of any modeling attempt is that it should be useful to solve or 
understand a particular problem under a given set conditions and constraints.  In any exercise aimed 
at developing a model, there is a benefit to be expected and an associated cost. A reasonable 
balance between the cost and the benefit should be sought to justify the attempt. Driven by the 
pressure to publish, many “new” models and modeling techniques appear in the hydrologic literature, 
a majority of which happen to be adding only marginal value to existing knowledge, usually at an 
unjustifiable cost.  There is also the unfortunate fact that research is resources-driven rather than 
needs driven.  There is also the perception that complex models are for the developed world whereas 
simple models are for the developing world.  The question then is, what criteria should be used in 
selecting or developing a model that suits a particular need under a given set of conditions and 
constraints.  The starting point should be to decide whether the model is for a practical purpose to 
solve a particular problem, or for an academic purpose with a view to better understand the hydrologic 
system. The views are divided. There is a school of thought that advocates the principle that better 
understanding of the system is more important than the end result. There is also the other school of 
thought that advocates the principle that it is the end result that matters and not how it is obtained.  In 
developed countries, where relatively more resources are available for research, the approach 
adopted has been to explore the hydrologic system in a distributed or semi-distributed manner. It has 
advantages and disadvantages. The advantages are mainly of a potential nature, meaning that it is 
only when all the components that constitute the model are known, or can be known, a priori, there 
will be better understanding of the system. This condition rarely exists in the real world. On the other 
hand, in less developed countries, where there are severe constraints in resources for research, the 



approach adopted is to look for simple, practical, and result-oriented methods that would suit the 
problem.  
 
3. CHALLENGES AHEAD 
 
3.1 Data issues.  
 

The accuracy and reliability of the outcome of a model depends upon the accuracy and reliability 
of the data used as inputs. For simple hydrologic models, the basic input is the rainfall, which varies 
spatially and temporally. Present day rain gages can measure rainfall to a very high degree of 
accuracy, but a reasonable spatial and temporal resolution is necessary to ensure that the data are 
representative. Averaging out the data has the tendency to smooth out variations, thereby distorting 
the real situation.  A compromise is often needed to strike a balance between the resources available 
and the accuracy of the expected result. The second most important hydrologic variable for modeling 
is the discharge resulting from rainfall, which can be considered as an integrator of all catchment-
scale processes. Direct measurements of discharges are rarely made under normal conditions. They 
are derived from stage measurements using rating curves. Stage measurements can be made quite 
precisely, but the rating curves depend upon many factors, such as the techniques and instruments 
used to measure velocities and channel hydraulic parameters, and whether or not measurements 
cover the entire range of possible values. Very often, rating curves are established under normal-flow 
conditions, and extrapolated to obtain discharges at high-flow conditions, thereby introducing an 
uncertain error. Measurements at high-flow conditions are usually not made, because they are difficult, 
dangerous, and costly. There are other hydrologic processes, such as evaporation and evapo-
transpiration, infiltration, interception, and depression storage, that contribute to the basin-scale 
hydrologic system, and their inclusion requires some approximations and assumptions while their 
exclusion results in over-simplification. Another factor that contributes to the uncertainty is the noise 
that is inherently present in all types of measured data.  In addition to hydrologic data, geometric, 
topographic, geologic, and land use data are needed for distributed type of models. On a local scale, 
such data can be found in limited situations. The resolutions vary and depend upon the region and the 
catchment. On a global or regional scale, remotely-sensed topographic data are available, particularly 
from satellite observations. Their resolutions also vary, but the publicly available data sets do rarely 
have resolutions finer than 1 km x 1 km horizontally, and a few 10’s of meters vertically. The results of 
any distributed model that uses such coarse data will have inherent errors of the same order or higher, 
than those of the input topographic data. 
 
3.2 Modeling issues.  
 

Hydrologic models can be classified according to several different criteria. On a broad basis, they 
can be classified as data-driven and physics-based.  The former type includes all models that do not 
consider the physics of the transformation of rainfall to discharges, whereas the latter type, in principle, 
considers laws of physics in the modeling process.  Data-driven models are relatively easier to 
implement, but not without problems. Physics-based models consider the catchment processes from 
a physics point of view, but their formulation, calibration, and implementation are quite resource and 
expertise demanding. Their problems are also of a higher magnitude. So far, no fully physics-based 
model has been successfully applied to a catchment, without making drastic assumptions and 
simplifications. There are also conceptual semi-distributed models that attempt to lump system 
characteristics on a small scale.  The main challenges that lie ahead in the data-driven modelling front 
include choosing between stochastic and deterministic approaches, lumped and semi-distributed 
approaches, linear and non-linear approaches, and stationary and non-stationary assumptions. The 
choice depends upon the purpose.  Most data-driven models are lumped.  Linear assumption makes 
subsequent analysis and application simple but, in many instances, it is far from reality.  Non-linear 
assumption makes the problem more realistic, but at a cost and lacks generality. Similarly, stationarity 
assumption makes analysis and application simpler, but with human influence (such as climate 



change) in the hydrologic system, the stationarity assumption no longer holds in many situations. The 
next modelling challenge comes from scale issues.  If the physics-based distributed approach is to be 
followed, it is necessary to define a set of governing equations. These include the Saint-Venant 
equations for overland flow, Richards equation for soil water flow, diffusion-type equation based on 
Darcy’s law and continuity for groundwater flow, Green and Ampt-, Horton-, and Philip-type equations 
for infiltration, and mass transfer-, aerodynamic-, or combination-type equations for evaporation.  Most 
such equations have been derived for a continuum, and whether they are valid in the scale of typical 
distributed models is an unresolved issue.   
 
3.3 Parameters and their calibration issues.  
 

All models need calibration before they could be applied. The normal practice is to compare the 
outcome of the model to the expected outcome and adjust the parameters using some optimization 
algorithm until the cumulative difference between them, as defined by an objective function, is a 
minimum.  For models with a small number of parameters, this is not difficult. However, as the number 
of parameters in the model increases, the problem of finding a global minimum of the objective 
function becomes difficult. The objective function often gets trapped at a local minimum. To deal with 
the problem of multiple local optima, global search methods, in which a parallel search of the solution  
space (as opposed to a point by point serial search) by using a population of potential solutions, is 
used. The capability of such techniques for effective “exploration” of the search space makes them 
less susceptible to get trapped in a local optima. Popular global search methods include population-
evolution-based search strategies, such as the shuffled complex evolution (SCE) algorithm [21] and 
genetic algorithm (GA) [22].  In the early stages, optimization methods focused mainly on the 
selection of a single-objective measure of the distance between the model-simulated output and the 
measured data and the selection of an automatic optimization algorithm to search for the parameter 
values which minimize that distance [23].  In recent years, because of the increase in the availability 
of measured data, multi-objective optimization methods have received more attention, as many of the 
recent distributed models simulate several watershed output fluxes (e.g. water flux, energy flux, 
sediment flux, water quality indicators) at multiple locations.  Even with a single flux, it would be useful 
to investigate different properties of the flux using multi-objective functions or different combinations of 
the transformation of the original flux. Based on the original SCE algorithm, recent studies have led to 
the development of the shuffled complex evolution Metropolis (SCEM) and the multi-objective shuffled 
complex evolution Metropolis (MOSCEM) algorithms [24,25].  Direct comparison of these methods 
would be helpful in selecting the most suitable calibration algorithm from the extensively used shuffled 
complex evolution family of algorithms.  For physics-based models, which are necessarily of a 
distributed nature, use of optimization techniques for calibration defeats the purpose.  By definition, 
the parameters of physics-based models are physically identifiable and thus measurable, at least in 
theory.  In practice, however, such an exercise is not easy to implement, particularly when the 
catchment characteristics are heterogeneous.  No distributed model, which accounts for catchment 
heterogeneities and spatially-varying hydrologic inputs, that has been calibrated using field measured 
parameter values exists at the present time.  Instead, what is often done is calibrating the parameters 
of the model using some kind of optimization technique against a single site measured single output 
data. As a result, most models that start with laws of physics end up as data-driven models, thereby 
defeating the very purpose of adopting such an approach. Assuming that the above is the only 
currently available option for calibrating distributed models, the next issue is the choice of the 
optimization algorithm.  In addition to the problem of getting trapped at a local optimum, another 
problem in multi-parameter optimization is that of equi-finality – a concept originated in the general 
systems model of Bertalanffy [26], meaning that the same final result may be arrived from different 
initial conditions and in different ways.  In open systems, the final state can be reached by many 
different ways, whereas in a closed system the equi-finality principle states that there is a cause-effect 
relationship between the initial state and the final state. In the context of multi-parameter optimization, 
what this means is that there is no unique set of parameter values, but rather a feasible parameter 
space from which a Pareto set of solutions is sought. The multi-objective shuffled complex evolution 



Metropolis (MOSCEM) algorithms [24,25], which use an improved concept of Pareto dominance by 
adding the Pareto rank of each of the members of dominated set, is reported to converge towards an 
optimal Pareto set of solutions.  Pareto set of solutions represent tradeoffs with the property that 
moving from one solution to another results in the improvement of one objective while causing 
deterioration in one or more others.  A state A (a set of target parameters) is said to be Pareto optimal 
if there is no other state B dominating the state A with respect to a set of objective functions.  A state 
A dominates a state B, if A is better than B in at least one objective function and not worse with 
respect to all other objective functions. The Pareto set represents the minimum uncertainty that can 
be achieved for the parameters via calibration.   
 
4. RECENT ADVANCES 
 

Recent advances in data driven approaches of hydrological modelling include different types of 
artificial neural networks such as multi-layer perceptron, radial basis functions, recurrent neural 
networks, wavelet neural networks and product unit neural networks, support vector machines that 
can be used for classification as well as regression, dynamical systems approach which can be used 
for short-time forecasting, genetic algorithms and genetic programming, fuzzy logic approach and 
neuro-fuzzy approach.  Two of the above approaches are highlighted here. 

 
4.1 Artificial neural networks 
 

Artificial neural networks, or ANN’s, emulate the brain which can be considered as a biological 
neural network. The processors operate on the data received via the connections.  The transformation 
of an input to a corresponding output by a single neuron is relatively simple.  The complexity and the 
power of ANN's arise as a result of the interactions of many neurons.  A system in which a large 
number of neurons are interconnected with exposure to the external environment is called an artificial 
neural network. Very often the neurons are arranged in layers with each layer having a number of 
neurons.   

An artificial neuron can be thought of as a mathematical model of the biological neuron.  It has five 
components: input(s), connection weights, threshold (or bias), activation function(s) and output(s).  It 
receives one or more inputs (analogous to dendrites) from the external environment and sums them 
up to produce an output analogous to the axon of a biological neuron.  This output then acts as the 
input to the next layer via a synapse.  In the same way as a biological neural network has 
interconnected neurons, artificial neurons also have connections to other neurons.  It is also possible 
for the output from the first layer to exit as the final output. 

There are many types of ANN's.  For example, multi-layer perceptron (MLP) type, radial basis 
function type, recurrent type, wavelet type, product unit type etc.  The widely used type is the multi-
layer perceptron which normally has 3 layers, an input layer, a hidden layer and an output layer.  In a 
multi-hidden layer perceptron the inputs are fully connected to the first hidden layer, each hidden layer 
is fully connected to the next, and the last hidden layer is fully connected to the output layer. 

The main problem in MLP function approximation is how to determine the number of nodes 
(neurons) in the hidden layer.  Too few nodes may not model the process adequately and too many 
will require a long computational time as well as resulting in over-fitting.  The objective of ANN is to 
model the signal, but over-fitting will fit to the noise as well producing a very good fit which lacks 
generalization properties when presented with unseen data.  The components of an ANN are 
illustrated in Figs. 1-3.  The optimal number of nodes in the hidden layer is determined by cross 
validation (Fig. 4) using different numbers of nodes which is a trial and error approach.  The widely 
used activation functions are of the sigmoid type and hyperbolic tangent type as defined below: 
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where r is the steepness parameter. 
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Fig. 1: Information flow in an ANN 

 

Fig. 2: A typical 3-layer perceptron 

 

 

Fig 3: Sigmoid activation function 



 

Fig. 4: Illustration of cross validation 
 

4.1.1. An example application 
 

ANN's have been used in many types of hydrological applications.  Publications are too numerous 
to list.  A recent application for water level prediction in Surma River in Bangladesh using radial basis 
function type neural networks is illustrated in Fig. 5. In this application ANN’s have been used to 
forecast daily water levels at the Sylhet gauging station (Latitude: 24º 42’N; Longitude: 91º 53’E) 
across Surma River which is one of the principal rivers originating from the Assam and Meghalaya 
hilly areas of India.  The network used is a 3-layer MLP with back-propagation algorithm to adjust 
connection weights.  The input layer has 4 nodes representing the water level on the previous day, 
rainfalls on the same day and 2 preceding days.  The output layer gives the current water level.  The 
data used for training covers the period from August 20, 1980 to December 11, 1989, for validation, 
the period from December 23, 1989 to April 15, 1999, and for application, the period from April 27, 
1999 to August 17, 2008.  More details of this application can be found in another joint publication by 
the author [27]. 

 

 



Fig. 5: Application to Surma River, Bangladesh 
 

4.2 Fuzzy Logic Approach 
 

Traditional logic theory involves reasoning based on binary sets which have two valued logic, true 
or false, yes or no, zero or one.  In real life however, much of the information that we come across 
and process is not so crispy but involves some degree of fuzziness.  The truth value may range 
between the completely true value and the completely false value, leading to a partial truth.  The key 
idea in fuzzy systems is to allow a partial truth to prevail which can be numerically described by a 
specific function, referred to as the membership function that takes values between 0 and 1.  Fuzzy 
logic enables embedding uncertain or imprecise reasoning in everyday life to computers which 
operate in exact deterministic ways.  Fuzzy logic models are conceptually easy to understand, flexible, 
tolerant to imprecise data and can handle nonlinear functions of arbitrary complexity and built on the 
experience of experts.  They translate imprecise linguistic information sets into computer usable 
numerical language.   

The general structure of a fuzzy logic system is illustrated in Fig. 6.  It consists of a knowledge 
base which includes a data base and a rule base, and 3 layers of information processing between the 
external input and output data.  The main problems in building fuzzy systems include the selection of 
the relevant input and output variables, choice of the possible term sets for each linguistic variable, 
choice of the type of membership functions, fuzzification of the crisp input and output variables, 
derivation of the rule set, aggregation of the outcomes of the rules and de-fuzzification.   

 

 
Fig. 6: Structure of a fuzzy logic system 

 
In the hydrological field, applications of fuzzy logic include water level forecasting [28-30], flood 
forecasting [31,32], infiltration modelling [33], rainfall-runoff modelling [34,35], hydrological time series 
modelling [36], river discharge prediction using neuro-fuzzy and adaptive neuro- fuzzy inference 
systems (ANFIS) [37], amongst others.  The results of an example application for predicting daily 
discharges at the Glencourse hydrometric station (6° 58’ 33.64’’ N; 80° 11’ 58.71” E) across Kelani 
River in Sri Lanka using time-lagged upstream discharges and rainfall data for the period 1993-2008 
is given below (Fig. 7). More relevant details can be found in separate publications by the author 
[38,39]. 

 



 

Fig. 7: Discharge prediction using fuzzy logic approach 

 
5. CONCLUDING REMARKS 
 

The challenges in hydrological modelling, despite the present abundance of hydrologic models 
and modeling techniques, arise as a result of the inadequacy of resources for research, lack of 
relevant data, lack of expertise, and lack of a clear understanding of the driving force for any 
hydrologic modeling attempt. In the first place, the choice needs to be based on whether the attempt 
is needs-driven or resources-driven. When it is needs driven, simple models are adequate, given the 
limitations arising from data inaccuracy. When it is resources-driven, consideration should be given to 
the marginal potential benefit that may be accrued against the costs associated with uncertainties and 
inaccuracies of the data, model formulation, and calibration issues.  It is also important to bear in mind 
the advances in analysis of non-linear systems in recent years which have made it possible to explore 
the hydrologic system (which has always been non-linear but for simplicity has been assumed linear) 
within a non-linear framework. There is also evidence to believe that the stationarity assumption made 
in the analysis of hydrologic time series in the past is no longer valid due to human interference in the 
natural hydrologic cycle.  Any future data-driven approach of hydrologic modelling should take into 
account this shift in paradigm and consider the vital role that non-linear non-stationary dynamics and 
scaling theories can play.   Calibration of parameters and uncertainty analysis are other areas that 
need attention. 
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